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In this paper, we present a new brain diagnostic method based on a computer aided

multispectral ultrasound diagnostics method (CAMUD). We explored the standard values

of the relative time of flight (RIT), as well as the attenuation, ATN, of multispectral

longitudinal ultrasound waves propagated non-invasively through the brains of a standard

Caucasian volunteer population across different ages and genders. For the interpretation of

the volunteers health questionnaire and ultrasound data we explored various clustering and

classification algorithms, such as PCA and ANOVA. We showed that the RIT and ATN values

provide very good estimators of possible physiological changes in the brain tissue and can

differentiate the possible high-risk groups obtained by other groups and methods (Russo

et al. [1]; Lloyd-Jones et al. [2]; Medscape [3]).

Special attention should be given to the subgroup which included almost 39% of the

volunteers. Respondents in this group have a significantly increased minimum ATN value

(see Classification Trees). These values are strongly correlated with the identified risk of

stroke factors being: age, increased alcohol consumption, cases of heart disease and stroke

in the family as already shown by Rusco and as incorporated into Lloyd-Jones et al., ‘‘Heart

Disease and Stroke Statistics – 2009 Update’’, by the American Heart Association (AHA) and

American Stroke Association (ASA), as updated recently in the 2015 ‘‘Stroke Prevention

Guidelines’’.
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1. Introduction

1.1. Aim and methodology

1.1.1. Aim
Currently, scientific advances in medical diagnostic imaging
such as magnetic resonance imaging (MRI), computed tomog-
raphy (CT) or even ultrasound, have reached very high
standards. These technologies provide comprehensive geo-
metrical information about a patient's internal tissue struc-
ture but contain little information about its bio-chemical
composition. On the other hand, laboratory analysis of
biological and chemical components of a patient's blood,
cerebrospinal fluid (CSF) or brain tissue provides very good
information about the composition of all single substances, for
instance by using chromatography, but not about the tissue
structure. Furthermore, many brain tissue pathologies are
often difficult to detect with standard medical imaging as
those minor changes in the brain tissue do not show any
discrepancies in picture that was taken. A good diagnosis, in
the early phases of such brain disorders, can only be made by a
very experienced specialist, such as a neurologist or psychia-
trist, who can interpret a patient's initial symptoms. Unfortu-
nately, similar to mental health problems, other brain illnesses
such as traumatic brain injuries are hard to detect or to track
with standard imaging or bio-chemical analysis. On the one
hand, these are often too minor to occur on the single image,
and on the other hand, they are too fast for chemical analysis,
thus making it difficult to treat them effectively.

To overcome the shortcomings of brain diagnostic tech-
nologies that exist today, this paper will present a novel
concept called ‘‘computer aided multispectral ultrasound
diagnostics’’ (CAMUD) for brain health monitoring. Our
solution use longitudinal mechanical ultrasound waves with
frequencies in the range of lower MHz and incorporates the
following components:

1. Proprietary multispectral ultrasound brain scanner SONO-

VUM ULTRAEASYTM [6];
2. Innovative form of brain health data analytics; and
3. Machine-learning prediction tool to diagnose, prevent

possible brain impairment with early detection and to
track brain disorder conditions and treatment in real time.

The first two steps will be described and discussed in detail in
this paper. The third step will form the basis of a correspond-
ing research study and the results will be presented in a
subsequent paper.

The first application to employ ultrasonic methods to
examine the brain relied on a simple echo reflection method.
Echoencephaloscopes, devices that employ reflected ultrasonic
waves to examine the position of brain structures, allowing
mainly for the diagnosis of the asymmetry of anatomical
structures, based on echo presented in ‘‘A Mode’’ (amplitude
presentation), were created in the mid-1960s. The first Polish
echoencephaloscope was developed in 1966 at the Institute
of Fundamental Technological Research, Polish Academy of
Sciences, under the direction of Professor Filipczynski. Succes-
sive ultrasound brain diagnostic methods like transcranial
Doppler (TCD) and scanning (ultrasonography) have been widely
adopted in practice. The first experiments involving a transcra-
nial ultrasound densitometry system were made by Prof. Roman
Mazur back in 2000 and published in «Udar Mózgu» [4]. The
ultrasound system used in this clinical experiment examined 62
patient's brain tissue with only one frequency. The authors
interpreted the recorded changes in the ultrasound signal as
simple density changes of the brain tissue due to absence of
blood, its hydrolyze or edema. We will demonstrate that using
multiple frequencies will show the dispersive character of the
brain tissue and provide some other interpretation to the
signal changes. In non-linear material, as, for example biological
tissue and especially human brain tissue, an effect of longitu-
dinal wave dispersion can be clearly observed and measured. It
is such effect, in which the non-linear frequency-dependent
mediums bulk modulus results in different propagation speeds
for different ultrasound frequencies [6]. In addition to the
observed changes in propagation speed, different attenuation
profiles can also be observed. Interdependence between wave
speed and attenuation is in accordance with Kramers–Kronig
equations ([5], (29)) where it is shown among others that
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As will be presented further in this paper, such pattern of
frequency-dependent attenuations and the corresponding
propagation speeds can be used to identify the state of a
medium or to track possible changes to the brain tissue in
real time.

To fulfill the paper's goals, a ‘‘SONOVUM ULTRAEASYTM)’’ [6]
ultrasound system for data acquisition was built by E3-
Technology, SONOMED and SONOVUM and used for multispectral
signal collection. Data was collected by MTZ Clinical Research
Warsaw (MTZ), during the medical experiment approved by
Bioethics Committee Vote Reg. No. KB/916/14 (Bioethics Board
Resolution no. 07/14 of the District Physicians Chamber in
Warsaw from March 13, 2014) from almost 250 volunteers with
representative ages and gender (see Fig. 1).

1.1.2. Experimental procedure
The collection of the ultrasound data, conducting the medical
examination, and administering the volunteers' question-
naire, was performed by MTZ according to the approved
protocol. The duration of the entire procedure for each
healthy volunteer did not exceed 20 min. It consisted of three
steps:

(A) Preparation for the main ultrasound examination

� Volunteer identification and signing informed consent.
� Answering the questionnaires (described below).



Fig. 1 – Gender/age distribution in the sample: the height of a bar represents the number of probants with the considered
gender in the given age (indicated on the horizontal axis).
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� Medical examination – to qualify only healthy subjects
for the experiment.

� Volunteers took off all objects that could hinder putting
on the measurement band and fixing the transmitter
(e.g. glasses, hair bands, clips, etc.).
(B) Main ultrasound measurement

� Measurement was made in a horizontal position.
� The measurement alone took around 5 min; volunteers
remained in horizontal position with their eyes closed
and in relaxed condition.
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� Any movements, such as yawning, chewing or swal-
lowing were not allowed.

� Relaxing music was provided during the whole mea-
surement session.

(C) Closing the measurement

� After taking the measurement, the unique identification
code of each volunteer was set as used in the database.

� All the data was recorded and saved in the database.

One of the important components of this study was the
patient's questionnaire where some additional information
was acquired that we then used for classifying the sub-groups.
All of the questions were designed to be based on the Heart
Disease and Stroke Statistics – 2009 Update and was divided
into four subsets:

1. Personal data where the standard information collected
included race, gender, age, weight, height, education
(primary, middle, higher);

2. Health activity including questions regarding smoking (what
and how much per week – may be in packs of cigarettes),
alcohol (e.g. beer, wine, vodka, none, seldom, medium, often
– e.g. per week), physical activity (as in amount and type of
exercise (e.g. cycling, walking) and general question such as:
‘‘Are you interested in the state of your health?’’);

3. General health condition informations, such as blood
pressure, known heart and vascular diseases, diabetes,
asthma or other lung diseases and blood values; as well as

4. Family information questions, such as ‘‘Was there a stroke
in the family and who had it?’’ ‘‘Did anybody in one's near
family have any other cranial problems?’’

1.1.3. Methodology
The entire procedure for acquiring data consisted of two
stages:
Fig. 2 – Attenuation distribution in the sample: the upper plot s
0.5–2.0 MHz averaged by all probants. The lower plot shows the
1. A coarse approximation of frequency attenuation distribu-
tion, FAD, which consists in emitting a sequence of
ultrasonic monospectral signals with in advance fixed
frequencies G = {G1, . . ., GHFAD} and receiving their echoes.
This is the basis for estimating the distribution of the
attenuation of ultrasonic waves in the frequency range
under consideration. As a result of that for each of the
respondents a row of attenuation coefficients a1, . . ., aHFAD

was obtained (see Fig. 2). Their values will be later referred
to as ATN. In estimating the attenuation coefficients the
characteristics of the measuring device was taken under
consideration.

2. Emitting a profiled ultrasonic multispectral signal (see
Fig. 3) whose parameters (number of frequencies HPRF
and their values F = {F1, . . ., FHPRF} and amplitudes) were
established on base of earlier made experiments. The
phase shifts of individual frequency components have
been chosen according to specific optimalization criteria
on absolute values of peaks, their spread and the average
value of the signal. The received echo is further decomposed
into single frequency components acquiring the bunch of
amplitude and phase value pairs (phase vectors), each
for every frequency f 2 F with use of the well known least
square method [16,17]. Afterwards a sequence of derived
parameters (relative arrive times (RAT)) TðRÞ

1 ; . . .; TðRÞ
HPRF�1 were

obtained:

TðRÞ
h ¼ ðFhþ1=chþ1Þ�ðFh=chÞ

DFh
�‘ ¼ Tx� Qh þ

modðD’h ; 2pÞ
DFh

� �
(3)

were obtained:where ch+1, ch are phase velocities of conse-
cutive frequencies Fh+1 and Fh, ‘ is the acoustic length (head
diameter), Dwh = wh+1 � wh is the difference between phases
for Fh+1 and Fh, Tx is the time point of the measurement and
Qh is an unknown parameter which is being estimated from
observed evolution of the values:

modðD’h ; 2pÞ
DFh

(4)
hows attenuations of various frequencies in the range
 best fitting polynomial interpolating these values.



Fig. 3 – The plot of a profiled signal which consists of a superposition of 10 frequencies sampled with 96 MHz sampling
frequency and a synchronization trailer (burst) at the beginning. The signal is internally represented as a sequence of
int16 values (integers in h�32768, 32767i). The burst consists of 480 elements and its values are sin(2p � (n/96)), n = 0, . . .,
479 (5 periods of sampled 1 MHz sinus sequence). The length of the entire signal is 213 = 8192.

Fig. 4 – RIT/ATN correspondence: each rectangle represents a fixed individual. The color represents gender (red – female, blue
– male). The left (bottom) edge of each rectangle is the first quantile of RIT (ATN) and the right (upper) edge is the third
quantile of these parameters.
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In case of no dispersion (wave velocity does not depend on
the frequency) the values T Rð Þ

h are all equal to the time TA the
wave head needs to reach the receiver after being sent (the
time of arrive, ToA). In order not to consider the pure
technical parameter Tx in further investigation, we restrict
ourselves to parameters

RiTh ¼ Qh þ
modðD’h ; 2pÞ

DFh
(5)

with Qh described above and which, in case of no dispersion,
is the time the wave ‘‘waits’’ at the receiver until being
detected and which will be referred to as relative idle time
(RiT). These values along with the attenuation coefficients
ATN are further used for classification of investigated
respondents.

2. Statistical analysis

2.1. Data collection

All the data necessary for this research was acquired by MTZ in
accordance with an approved procedure. After collecting some
personal data (age, gender, state of health, habits, etc.) a
volunteer was subjected to an ultrasonic measurement out of
which 10 complex timeseries were obtained – 1 series for 1 of
10 frequencies. These timeseries, after being decomposed into
amplitudes and phase timeseries were transformed into
attenuations (ATN) and relative idle times (RIT) (see Fig. 4).
The latter augmented with measurement quality information
are referred to as RITx.

2.2. Classification of ATN, RIT and RITx measurements

2.2.1. Dimension reduction
2.2.1.1. Data. The measurements (ATN, RIT and RITx with
their amplitudes) are registered in a three dimensional data
matrix. The dimensions are:

� frequencies (38 variables for FAD data, 9 � 2 variables for
profile data),

� cases (247 different persons),
� repetitions (50 repetitions for FAD data, approximately 1800
profile repetitions per person).

The first reduction transforms the measurements into a two
dimensional matrix. The repetitions for each frequency and
each person are substituted by three quartiles (25%, 50% and
75% quantiles of distribution). The reduced data matrix is two
dimensional. The columns of the data represent frequencies
(38 � 3 variables for hat data, 9 � 2 �3 variables for profile
data), while rows correspond to 247 cases (247 persons).
The reduction is possible due to symmetry and low kurtosis of
data.

2.2.2. Principal components
The second reduction of data uses the principal components
method. The columns are highly correlated, so the reduction
is significant. The number of retained components depends
on chosen level of explained variability 95%. The principal
components are calculated from covariance matrix for ATN
data, and from correlation matrix for RIT data.

The reduction for ATN is substantial – from 114 to 25, for RIT
from 54 to 17; for RITx – from 27 to 9.

2.2.3. Classification
The classification is provided in two steps:

� Hierarchical clustering using k-means method on the
reduced data (principal components step),

� Classification tree on data after first reduction (frequencies �
quantiles) using classes obtained in first classification step.

The second step provides a better description of the classes
showing which frequencies and which quantiles are respon-
sible for classification. It is interesting that in classification
only the first and third quartile is used. It means that in
classification the greatest influence have the tails of
distribution, not the central tendency parameters, as often
believed.

2.2.3.1. ATN classification. Hierarchical clustering shows that
the data is not homogenous. It is possible to divide the data
into two or three clusters. The ANOVA comparison between
the system with two clusters and system with three clusters
shows that the system with three clusters is significantly
better (Fig. 5). The ANOVA tests show that only the first
principal component gives statistically significant differences
between the groups. To find the outliers the distance between
cluster centers and each member of cluster was calculated.
Seven persons are the outliers in the classification of ATN
measurements.

2.2.3.2. RIT classification. The file RIT includes the RIT and
amplitude data for nine frequency pairs. Hierarchical cluster-
ing shows that the data are not homogenous. The ANOVA
comparison between the system with two clusters and system
with three clusters shows that the system with two clusters is
significantly better (Fig. 6). The ANOVA tests show that only
the first principal component gives statistically significant
differences between the groups. Four persons are the outliers
in the classification of RIT measurements.

2.2.3.3. RITx classification. The set RITx includes the RIT data
for nine frequency pairs. Hierarchical clustering shows that
the data is not homogenous. The ANOVA comparison between
the system with two clusters and system with three clusters
shows that the system with two clusters is significantly better
(Fig. 6). The ANOVA tests show that only the second principal
component gives statistically significant differences between
the groups. Five persons are the outliers in the classification of
RITx measurements.

2.2.4. Comparison of clusters
The Chi-square test was provided to compare the clusters
between the different measurements. The test shows that the
clusters of RIT and ATN are highly correlated:

� the class 1 of RIT correlate with class 2 of ATN;
� the class 2 of RIT correlate with class 3 of ATN.



Fig. 5 – Classification Tree for ATN: each branch contains an attribute test condition to separate cases that have different
characteristics. The nodes enclose two kinds of information: the upper row contains the classification suggestion; the lower
one determines frequencies of individuals in each of the considered classes.
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2.3. Correlation of additional features with ATN, RIT and
RITx classification

The dependence of classification modalities and factor levels
was verified by exact Fisher test.1 The strength of relation
between specific classification modality and factor level is
described by standardized residuals (Pearson residuals).

For a contingency table [nij], where nij is the number of cases
in class i and feature level j the standardized Pearson residual is
the value

rij ¼
nij�eijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1�piÞð1�qjÞeij
q (6)

where

eij ¼
niþ�nþj

n
; niþ ¼

X
j

nij; nþj ¼
X
i

nij; n ¼
X
ij

nij; pi

¼ niþ
n

; qj ¼
nþj

n
(7)

The positive values of the residual indicate over-representa-
tion of the feature in the class. The negative value of the
residual indicate the significant under-representation of the
feature in the class. The Pearson residuals are known as
significant if |rij| � 1.96.

2.3.1. Class characteristics
In Tables 1–3 classes are described by statistically significantly
dependent features (upper table) and, in the case of nonsignifi-
cant dependence, by features which have significant Pearson
1 If the cardinalities in contingency table are small the Fisher test
is more appropriate.
residuals. The features are expressed in interval continuous
scale or as the factors.

� For features in continuous scale the classes are described by
mean value and, in the case of ATN classification, by
grouping variable ( A, B).

� For factor features the strength is described by standardized
residuals (Pearson residuals). The positive values of residuals
indicate the significant over-representation of the future in
the class. The negative values of residuals indicate the
significant under-representation of the future in the class.

� The strength of binary (dichotomic) feature is preceded by
letters: T(rue) if the future exists or F(alse) if the future did
not exists in the class.

� The strength of multiple level feature is preceded by the
digit, representing the level of the feature.

The ATN class 1 is significantly correlated with mean age of
40.3 years, occurrence of stroke in the grandparents, non-
abstinence and occurrence of infarct in parents.

The ATN class 2 is significantly correlated with mean age of
46.8 years, nonoccurrence of stroke in the grandparents, never
drinking wine, abstinence and nonoccurrence of infarct in
parents.

The ATN class 3 is significantly correlated with mean age of
38.1 years.

In conclusion:

� The ATN class 1 is significantly correlated with the people
who have some problems in their family history (e.g. stroke,
infarct) and who are non-abstinence.

� The ATN class 2 is significantly correlated with the people
without any problems with abstinence or family history
problems (e.g. stroke, infarct).



Fig. 6 – Classification Tree for RIT and RITx: each branch
contains an attribute test condition to separate cases that
have different characteristics. The nodes enclose two kinds
of information: the upper row contains the classification
suggestion; the lower one determines frequencies of
individuals in each of the considered classes.

Table 1 – ATN classification characteristics; p is the p-value of 

ATN class Age*

p < 0.001 

1 40.3 B 

2 46.8 A 

3 38.1 B

ATN class Abstinent*

p = 0.04 

1 F 1.97 

2 T 2.49 

3

ATN class BMI class 

p = 0.16 

1 4: �1.97
2 

* Statistically significant correlation.
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Observing the significant Pearson residuals, one can conclude
that:

� The ATN class 1 is related with non-obese people (BMI class
4).

� The ATN class 2 is related with people who never drink beer,
vodka, smoke 5–10 cigarettes per week and finished high
school.

The RIT class 1 is significantly correlated with mean age
43.7 years, mean weight 74.4 kg, mean BMI value 25.4, with the
people who have higher than primary education, with the
nonoccurrence of infarct in their grandparents, but with the
significant occurrence of thyroid.

The RIT class 2 is significantly correlated with mean age
34.9 years, mean weight 68.0 kg, mean BMI value 23.6, with the
people who have primary education, with the occurrence of
infarct in their grandparents, but with the significant
nonoccurrence of thyroid.

Observing the significant Pearson residuals, one can
conclude that:

The RIT class 1 is related with the group of people who
smoke 0–5 cigarettes per week, while the RIT class 2 is related
with the group of people who smoke more than 5 cigarettes per
week

The RITx class 1 is significantly correlated with mean
weight 75 kg and BMI value 25.6, while the RITx class 2 is
significantly correlated with mean weight 71.1 kg and BMI
value 24.4.

All calculations were performed on Open Source environ-
ment R version 3.1.1 Copyright (C) 2014 The R Foundation for
Statistical Computing.
exact Fisher test.

Stroke grandparents* Drinkwine*

p = 0.006 p = 0.02

T 2.41
F 2.89 0: 3.24; 1: �2.96

Infarct parents* Drink beer

p = 0.05 p = 0.14

T 2.40
F 1.95 0: 2.52; 1: �2.45

Drink vodka Education

p = 0.22 p = 0.23

0: 2.52; 1: �2.45 2: 2.14



Table 2 – RIT classification characteristics; upper table – significant ( p � 0.05) dependence; p is the p-value of exact Fisher
test.

RIT class Age* Weight* BMI* Education*

p < 0.001 p = 0.006 p = 0.009 p = 0.01

1 43.7 74.4 25.4 1: �3.10
2 34.9 68.0 23.6 1: 3.10

RIT class Infarct grandparents* Thyroid* Smoke

p = 0.05 p = 0.05 p = 0.12

1 F 2.07 T 2.11 0–5: 1.96
2 T 2.07 F 2.11 0–5: �1.96

* Statistically significant correlation.

Table 3 – RITx classification characteristics; p is the p-value of exact Fisher test.

RITx class Weight* BMI* Stroke parents* Education Smoke

p = 0.04 p = 0.03 p = 0.007 p = 0.07 p = 0.16

1 75.0 25.6 T 2.84 2: 2.31 5–10: �2.21
2 71.1 24.4 F 2.84 2: �2.31 5–10: 2.21

* Statistically significant correlation.
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3. Conclusions

None of the volunteers that were considered in the control
group had any identified stroke symptoms or congestion.
However, the ultrasonic test indicated that there is no
homogeneous but rather heterogeneous group to this respect
(see RITx classification tree (Fig. 6). High BP (blood pressure), TIA
(transient ischemic attack), focal symptoms of weakness or speech
impairment, age, gender, diabetes mellitus, current cigarette
smoking, diabetes, high BMI, heart disease. All the symptoms
cited above (except three highlighted in italics) were shown
in our study. We observed that a group of almost 39%
respondents was distinguished by our multispectral ultrasonic
testing (CAMUD). The respondents in this group have the
minimum value of ATN for 17, 18, 22, 24 and 28. frequency
higher than others. Intriguing, these values are almost
perfectly correlated with the risk of stroke factors indicated
in Russo et al. [1]; Lloyd-Jones et al. [2]; Medscape [3]. Namely:
age, increased alcohol consumption, cases of heart disease and stroke
in the family was over-proportionally represented by this group.
Our investigations clearly show the potential of the CAMUD as
a very powerful diagnostic method to detect and quantify a
persons' risk of stroke, based on analyzing that person's brain
tissue health, using non-invasive multispectral ultrasonic
brain measurements and adaptive profiles.

4. Further investigations

The purpose of future study is the implementation of CAMUD
to detect a cryptogenic stroke, microangiopathic white lesions
(WML) and cerebral microbleeds (CMB) in comparison to MRI
imaging of patients with atrial fibrillation (AF) who are treated
with chronic anticoagulation. Independently, we would like to
find a correlation between the CAMUD signals and diagnostic
method and certain clinical outcomes including symptomatic
stroke, dementia, depressive symptoms and cognitive disor-
der in patients with AF during a 5 year period. We would like to
include in our study 50 patients aged over 65 years with AF
(control group will be 30 patients without AF). We selected
patients with AF because in the last 20 years, AF has become
one of the most important public health problems and a
significant cause of increasing health care costs in western
countries. The prevalence of AF is increasing due to our greater
ability to treat chronic cardiac and non-cardiac diseases, and
the improved ability to suspect and diagnose AF. At the
present time, the prevalence of AF (2%) is double than that
reported in the last decade. The prevalence of AF varies with
age and gender. AF is present in 0.12–0.16% of those younger
than 49 years, in 3.7–4.2% of those aged 60–70 years, and in
10–17% of those aged 80 years or older. It has been
approximated that 2.2 million people in the North America
and 4.5 million in European Union have paroxysmal or
persistent atrial fibrillation. AF itself is an independent long-
term risk factor of stroke and related cardio-embolic cerebro-
vascular accidents. Moreover, it is sometimes overlooked that
silent ischemic stroke (SS) is frequently seen in patients with
asymptomatic AF [7–15]. Although present knowledge and
MRI-associated costs do not support routine use of brain MRI
in asymptomatic patients with AF, as more data emerge MRI
may become an increasingly useful way to stratify patients
with AF and individualize their treatment. We are going to
compare magnetic resonance imaging (MRI) of the brain with
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the CAMUD signals and diagnostic method in patients with AF
treated with chronic anticoagulation.
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